
CSCI 210: Computer Architecture

Lecture 37: Faster Caches

Stephen Checkoway

Oberlin College

Jan. 12, 2022

Slides from Cynthia Taylor

1

Announcements

• Problem Set 12 due Friday at midnight

• Cache Lab (final project) due on the final exam day

• Course Evals!
– Extra credit for 90% response rate

– Currently at 62% (as of 2022-01-12 at 09:00)

• Office Hours Friday 13:30 – 14:30
– On Zoom

for(int i = 0; i<10,000,000;i++)

sum+=A[i];

Assume each element of A is 4 bytes and sum is

kept in a register. Assume a direct-mapped 32 kB

cache with 32 byte blocks. Which changes would

help the hit rate of the above code?

Selection Change

A Increase to 2-way set associativity

B Increase block size to 64 bytes

C Increase cache size to 64 KB

D A and C combined

E A, B, and C combined

Three types of cache misses

• Compulsory (or cold-start) misses

– first access to the data.

• Capacity misses

– we missed only because the cache isn’t

big enough.

• Conflict misses

– we missed because the data maps to the

same index as other data that forced it

out of the cache.

tag data

address:

4 00000100

8 00001000

12 00001100

4 00000100

8 00001000

20 00010100

4 00000100

8 00001000

20 00010100

24 00011000

12 00001100

8 00001000

4 00000100

DM cache

Cache Miss Type

Suppose you experience a cache miss

on a block (let's call it block A). You

have accessed block A in the past.

There have been precisely 1027

different blocks accessed between your

last access to block A and your current

miss. Your block size is 32-bytes and

you have a 64 kB cache (recall a kB =

1024 bytes). What kind of miss was

this?

Selection Cache Miss

A Compulsory

B Capacity

C Conflict

D Both Capacity and

Conflict

E None of the above

Multilevel Caches

• Primary (or level-1) cache attached to CPU

– Small, but fast

• Level-2 cache services misses from primary cache

– Larger, slower, but still faster than main memory

• L-3 cache usually services multiple CPUs

• L-3 misses go to main memory

Multilevel Cache Example

• Given

– CPU base CPI = 1, clock rate = 1 cycle/.25 ns

– Miss rate/instruction = 2%

– Main memory access time = 100 ns

• With just primary (L-1) cache

– Miss penalty = 100 ns/(0.25 ns/cycle) = 400 cycles

– Effective CPI = 1 + 0.02 × 400 = 9

• Now add L-2 cache

– Access time = 5 ns

– Global miss rate to main memory = 0.5%

• Primary miss with L-2 hit

– Penalty = 5 ns/(0.25 ns/cycle) = 20 cycles

• Main memory still 400 cycle penalty, L1 miss rate of 2%

• The Total CPI will be

A. 1 + 2 × 20 + 5 × 400

B. 1 + 0.02 × 20 + 0.005 × 400

C. 1 + 0.02 × 20 × 0.005 × 400

D. 1 + 0.0195 × 20 + 0.005 × 400

Multilevel Cache Considerations

• Primary cache

– Focus on minimal hit time

• L-2 cache

– Focus on low miss rate to avoid main memory access

– Hit time has less overall impact

• Results

– L-1 cache usually smaller than a single cache

– L-1 block size smaller than L-2 block size

– L-1 less associative than L-2

Interactions with Advanced CPUs

• Out-of-order CPUs can execute instructions during cache miss

– Pending store stays in load/store unit

– Dependent instructions wait in reservation stations

• Independent instructions continue

Prefetching

• Hardware Prefetching

– suppose you are walking through a single element in an array of large

objects

– hardware determines the “stride” and starts grabbing values early

• Software Prefetching

– Compiler adds extra instructions to load data before it is needed

Which data structure will have better memory

access times assuming you have a prefetcher?

A. ArrayList

B. Linked List

C. There will not be any difference

Writing Cache-Aware Code

• Focus on your working set

• If your “working set” fits in L1 it will be vastly better than a

“working set” that fits only on disk.

• If you have a large data set – do processing on it in chunks.

• Think about regularity in data structures (can a prefetcher

guess where you are going – or are you pointer chasing)

Cache Simulator

• Take in a datatrace of load/stores from a real program

• Simulate running the program on a given cache

• Calculate how well a given cache would perform for that trace

Cache Parameters

• Always: Write-allocate, write-back, LRU replacement

• Change:

– Cache size

– Block size

– Associativity

– Miss penalty

Address Trace

Load/Store Address InstructionCount

0 7fffed80 1

0 10010000 10

0 10010060 3

1 10010030 4

0 10010004 6

0 10010064 3

1 10010034 4

L/S: 0 for load, 1 for store

Simulation Results

Simulation results:

execution time 52268708 cycles

instructions 5136716

memory accesses 1957764

overall miss rate 0.79

load miss rate 0.88

CPI 10.18

average memory access time 24.07 cycles

dirty evictions 225876

load_misses 1525974

store_misses 30034

load_hits 205909

store_hits 195847

What do you need to do?

• Create data structures that emulate a cache

• For each instruction, find where it would go in the cache, check

if it’s already there

• Calculate number of miss penalty cycles, load misses, store

misses, instructions, etc

Reading

• Next lecture: Class Wrap Up

31

