CSCI 210: Computer Architecture
Lecture 37: Faster Caches

Stephen Checkoway
Oberlin College

Jan. 12, 2022
Slides from Cynthia Taylor

Announcements
Problem Set 12 due Friday at midnight
Cache Lab (final project) due on the final exam day

Course Evals!

— Extra credit for 90% response rate
— Currently at 62% (as of 2022-01-12 at 09:00)

Office Hours Friday 13:30 — 14:30

— On Zoom

for(inti=0; i<10,000,000;i++)

sum+=A[i];
Assume each element of A is 4 bytes and sum is
kept in a register. Assume a direct-mapped 32 kB
cache with 32 byte blocks. Which changes would
help the hit rate of the above code?

A Increase to 2-way set associativity
B Increase block size to 64 bytes

C Increase cache size to 64 KB

D A and C combined

E A, B, and C combined

Three types of cache misses

 Compulsory (or cold-start) misses
— first access to the data.
* Capacity misses
— we missed only because the cache isn’t
big enough.
* Conflict misses

— we missed because the data maps to the
same index as other data that forced it
out of the cache.

address:

4
8
12
4
8
20
4
8
20
24
12
8
4

00000100
00001000
00001100
00000100
00001000
00010100
00000100
00001000
00010100
00011000
00001100
00001000
00000100

tag

data

DM cache

Cache Miss Type

Suppose you experience a cache miss

on a block (let's call it block A). You A Compulsory
have accessed block A in the past. B Capacity
There have been precisely 1027 C Conflict
different blocks accessed between your D Both Capacity and
last access to block A and your current Conflict

E None of the above

miss. Your block size is 32-bytes and

you have a 64 kB cache (recall a kB =
1024 bytes). What kind of miss was
this?

Multilevel Caches

Primary (or level-1) cache attached to CPU
— Small, but fast

Level-2 cache services misses from primary cache

— Larger, slower, but still faster than main memory
L-3 cache usually services multiple CPUs

L-3 misses go to main memory

Multilevel Cache Example

* Given
— CPU base CPI = 1, clock rate = 1 cycle/.25 ns
— Miss rate/instruction = 2%
— Main memory access time = 100 ns
e With just primary (L-1) cache
— Miss penalty = 100 ns/(0.25 ns/cycle) = 400 cycles
— Effective CPI=1+0.02x400=9

e Now add L-2 cache

— Access time =5 ns

— Global miss rate to main memory = 0.5%
* Primary miss with L-2 hit
— Penalty = 5 ns/(0.25 ns/cycle) = 20 cycles
 Main memory still 400 cycle penalty, L1 miss rate of 2%
* The Total CPI will be
1+2x20+5x400
1+ 0.02 x 20+ 0.005 x 400
1+0.02 x20 % 0.005 x 400
. 1+0.0195 x 20 + 0.005 x 400

o 0w >

Multilevel Cache Considerations

* Primary cache
— Focus on minimal hit time
e -2 cache
— Focus on low miss rate to avoid main memory access

— Hit time has less overall impact

* Results
— L-1 cache usually smaller than a single cache
— L-1 block size smaller than L-2 block size
— L-1 less associative than L-2

Interactions with Advanced CPUs

* QOut-of-order CPUs can execute instructions during cache miss
— Pending store stays in load/store unit

— Dependent instructions wait in reservation stations

* Independent instructions continue

Prefetching

* Hardware Prefetching

— suppose you are walking through a single element in an array of large
objects

— hardware determines the “stride” and starts grabbing values early

e Software Prefetching

— Compiler adds extra instructions to load data before it is needed

Which data structure will have better memory
access times assuming you have a prefetcher?

A. Arraylist

B. Linked List

C. There will not be any difference

Writing Cache-Aware Code

Focus on your working set

If your “working set” fits in L1 it will be vastly better than a
“working set” that fits only on disk.

If you have a large data set — do processing on it in chunks.

Think about regularity in data structures (can a prefetcher
guess where you are going — or are you pointer chasing)

Cache Simulator

* Take in a datatrace of load/stores from a real program

* Simulate running the program on a given cache

e Calculate how well a given cache would perform for that trace

Cache Parameters

* Always: Write-allocate, write-back, LRU replacement

* Change:
— Cache size
— Block size
— Associativity
— Miss penalty

Address Trace

Load/Store Address InstructionCount

7fffed80
10010000
10010060
10010030
10010004
10010064
10010034

KR H HH K
H O ORr OO O
B wWwo s W

L/S: O for load, 1 for store

Simulation Results

Simulation results:
execution time
instructions
Mmemory accesses
overall miss rate
load miss rate
CPI
average memory access time
dirty evictions
load misses
store misses
load hits
store hits

52268708
5136716
1957764

0.79
0.88
10.18
24.07
225876
1525974
30034
205909
195847

cycles

cycles

What do you need to do?

 Create data structures that emulate a cache

* For each instruction, find where it would go in the cache, check
if it’s already there

e Calculate number of miss penalty cycles, load misses, store
misses, instructions, etc

Reading

* Next lecture: Class Wrap Up

